在现代通信设计中,无线网络通信系统至关重要。一个典型的无线网络通信系统由一个中心站、最多36个外围站和若干个转发器组成。中心站和外围站的设备包括点对多点通信设备、网管、监控及调度台、图像编/解码器、摄像头、天线和馈线等。这些设备分别装载在通信车和作战车上,共同构成了一个完善的无线网络通信系统。
信道分配是无线网络通信系统的重要组成部分。一个高效的信道分配策略可以提高信道资源的利用率,保证通信的顺畅进行。例如,在一个无线网络通信系统中,可以通过按需分配策略,根据每个外围站的需求,合理地分配18条无线信道和3路图像信道。
为了确保通信质量,系统需要采取多种措施。例如,可以采用纠错和组合纠错措施,包括8比特(60,50)RS码、交织(31,21)BCH码、交织(15,11)BCH码和交织11中取9双相大数判纠错。这些措施可以有效地提高业务数据的通信质量,降低误码率,从而提高通信的可靠性。
此外,无线网络通信系统还可以通过级联纠错的方法来提高通信质量。例如,在传输网管数据时,可以先采用BCH纠错,再进行RS码纠错。这样可以在RS纠错的基础上,进一步提高信道误码率,从而保证网管数据的传输效率。
在图像传输方面,可以采用FDMA方式进行传输。例如,当外围站向中心站传输图像时,可以首先向中心站提出申请,由中心站调度人员通过调度台给该外围站建立图像传输通道。中心站可以同时监视多个外围站上传的图像信号,从而实现高效的图像传输。
总之,随着无线网络技术的发展,无线网络通信系统在各个领域得到了广泛的应用。通过对信道分配、纠错和组合纠错等关键技术的深入研究,我们可以构建更加高效、稳定的无线网络通信系统,为人们提供更加便捷、安全的通信服务。
1 引言
在有线网络为主体的条件下,需要辅以无线网络平台,使网络广泛覆盖并可机动应用。
2 通信设计
无线网络通信系统包括1个中心站,最多36个外围站和若干个转发器组成。
中心站和外围站设备主要有点对多点通信设备,网管、监控及调度台,图像编/解码器,摄像头,天线和馈线等,分别装载在通信车和作战车上。系统设备组成框图如图1所示。

2.1 信道分配
系统共有18条无线信道、3路图像信道和1路通播信道,实现中心站与36个外围站的话音、数据和图像的传输。在中心站,共有18支路的业务数据和3路图像,而每个外围站有2个支路业务数据和1路图像。为保证信道资源的高效利用,采用按需分配策略,保证36个外围站根据需要占用18条无线信道和3路图像信道。
2.1.1 话音和数据(TDMA信道)
中心站申请信道时,由交换机在某个支路上发出信道占用申请,系统在认可后通过信令交互得知该支路要连接的站点,然后为该支路分配一个空闲信道并建立该支路到目标站点的连接,连接建立成功后通知交换机链路建立成功。
由于外围站发出的信道占用,必然是去往中心站,所以在外围站不需告诉要连接目标站点。
为了防止信道不稳定造成的链接误拆,链路的拆除统一由中心站识别信令来决定。
2.1.2 图像(FDMA信道)
由于图像信息速率最高为2Mbps,并且同时只传3路,故采用FDMA方式进行传输。当某外围站向中心站传输图像时,首先向中心站提出申请,由中心站调度人员通过调度台给该外围站建立图像传输通道,中心站可同时监视3个外围站上传的3路图像信号。其组成示意图如图2所示。

2.1.3
为了提高信道质量,系统采用了多种纠错及组合纠错措施,包括8比特(60,50)RS码、交织(31,21)BCH码、交织(15,11)BCH码和交织11中取9双相大数判纠错。其中RS码和BCH码的纠错能力如图3所示。

上行管理数据和所有业务数据都采取了GF(8)的(60,50)RS码纠错,可纠正5字节数据的错误,大大提高了业务数据的通信质量。
网管数据通信要求有误码率较低的信道,因此采取级联纠错的方法。先对异步数据采取BCH纠错,再进行RS码纠错。RS码纠错是采用与业务数据相同的编码方式,而BCH码采用(15,11)的编码方式。采用BCH纠错,用于在RS纠错基础上,将信道误码率从110-4提高到110-5,从而保证网管数据的通过率。
此外还对BCH纠错后的数据进行了交织编码,以减小突发误码对BCH纠错性能的影响。
下行信令数据也采取级联纠错的方法,不同的是,BCH码采用(31,21)的编码方式,期望在RS纠错基础上,将信道误码率从110-4提高到110-6,从而为信令数据提供更高的通信质量。
各外围站的上行信令主要用于链路的建立,其数据量小而且分散,但要求及时的传输,因而不能采用RS纠错,而是采用了11中取9的大数判纠错措施,同时对编码数据进行简单的交织处理。中心站信令的接收端对上行信令进行双相大数判译码,当存在严重的突发误码时,不可靠的信令帧将被抛弃。