当前位置: 首页 » 技术支持 » 博文资讯 »

PTN与IPRAN基站对接技术详解指南

PTN与IPRAN基站对接技术详解指南

随着移动互联网的普及,数据流量带宽需求不断增长,传统基站E1上联方式正逐渐向以太网转变。这种转变是为了解决原有回程网络在扩展能力和带宽成本上的不足,实现基站承载网络的IP化改造。
PTN与IP RAN成为新一代承载方案的主要竞争者。PTN技术位于物理层和IP层之间,能高效地处理分组业务,具备良好的可扩展性和OAM管理功能。而IP RAN则需要支持多种接口和传输媒介,以适应网络承载的渐进式演进。
在PTN与基站对接方面,主要有FE电口和FE光口两种方式。FE电口传输距离有限,而FE光口传输距离更长,且安全性能更高。组网接入方式有环形、支链和光纤拉远等,需根据实际情况选择。
对于IP RAN,需解决基站深化覆盖、同步、组网灵活性和端到端OAM等问题。例如,新型地面同步系统可解决卫星同步系统的问题,而动态IP路由和逻辑管道等技术则有助于提升运维效率和降低TCO。
总之,基站承载网络的IP化改造是大势所趋,需要综合考虑各种技术和成本因素,以确保高质量、高可靠的网络服务

  随着移动数据业务的迅速发展,流量和带宽需求呈几何级数增长,传统基站E1上联的方式正逐步向以太网上联转变。原有的以MSTP为主的回程网络本质上仍然是TDM技术,无论是扩展能力还是带宽成本,都已经不能满足业务发展的需要。为了解决这个问题,基站承载网络IP化改造成为未来发展的必然趋势。在此新形势下,业界对移动基站回传的关注度不断增加。

  基站回传,主要集中在基站(BTS)与基站控制器(BSC)之间的传送网络,称为RAN(RadioAccessNet-work)。在新一代承载方案的选择上,出现了两种竞争性技术:PTN与IP RAN。

  

  PTN技术特性

  分组传送网在垂直网络协议中位于一层的物理层和三层的IP层之间,能够对分组业务提供高效统计复用传送,网络结构支持分层分域,具有良好的可扩展性,可以提供可靠的网络保护及OAM管理功能,具备完善的QoS功能,兼容传统TDM、ATM、FR等业务的综合传送网技术,支持分组的时间及时钟同步,分组传送网需要具备多种功能来实现上述业务的传送,这其中既有继承的原来SDH传送网的功能需求,也有针对分组业务提出的新的功能需求。目前,T-MPLS和PBT(PBB-TE)技术是分组传送网的代表技术,可以较好地满足分组传送网的功能要求。

  PTN是怎么样跟基站对接的

  目前主流IP化基站可提供FE光口、FE电口等接口,各地运营商所关注的是传输侧PTN接入设备通过哪种方式与之对接。

  应用-采用FE电口对接,如果用于以太网传输,距离不能超过100米,范围有限。但是采用FE光口对接,普通光模块传输距离2.5km,长距光模块15km,同居和异居对接都可以选择。

  安全-采用电口方式,网线容易松动导致信号容易丢失。相比之下,光口安全性能更高。

  成本-传输侧FE电口板与FE光口板成本相近,配置光口需要光模块。基站侧标配为FE电口。通过增加光模块的方式即可实现FE光口。光口与电口成本角度相比,差别在于光模块,光模块成本较低。

  

  1、环形组网接入

  对于基站所在机房环境、电源供电等安装条件良好,可以满足传输设备安装要求,同时该基站在光缆路由上为环上节点,则每个基站内均放置一端PTN接入设备,各站组成PTN GE接入环。

  设备选用原则有二。业务密集区放置稍大容量PTN接入设备,可接入更多GE支链,未来设备可升级至10GE;业务稀疏区放置小容量PTN接入设备,可控制成本,并节省机房空间。

  2、支链组网接入

  对于基站所在机房条件差,无直流供电保障,有传输安装位置的基站以支链形式接入;另外,如果该基站在光缆路由上为末端支链,组网上宜以支链形式接入。设备选用小型PTN接入设备(1U~2U)。

  部分室分基站内已有SDH设备,且仅有此一个安装位置。可以采用硬割接方式,即先将SDH设备拆除,再安装PTN设备。此方式会造成业务中断时间较长(5~10分钟),适用于非重要业务区域。此操作可与基站侧更换FE光模块的操作同步进行,双方施工人员同时进站,以最大程度减少业务中断时间。

  3、光纤拉远至附近宏站

  对于基站所在机房条件差,无直流供电保障,无传输安装位置的基站,多以室分站为主,此类型基站可将BBU所出FE光口光纤直接拉远至附近宏站内PTN设备,普通光模块传输距离2.5km,长距光模块15km。

  此种接入方式的优点是:施工难度低,不需要考虑传输设备安装。并且传输侧节省了一端PTN末端接入设备的成本。缺点是:末端站缺乏传输设备监控,拉远段落内出现故障无法快速定位。从维护角度来讲,无线专业和传输专业的界面划分需要划定,主要体现在拉远这段的光缆。

  

  基站IPRAN需求分析

  在移动互联网时代,多业务承载和综合成本控制等原因,对CDMA基站IPRAN提出了更高的承载要求。

  由于网络演进不可能一蹴而就,会在一定时期内存在2G、3G乃至4G基站共站址的情况。因此,基站IPRAN需要考虑统一承载,在BTS基站侧能够支持E1、IMA、IP等多种接口;在BSC/RNC侧需要支持STM-1、IP接口。第一,在网络承载渐变的过程中,需要考虑到不同承载网络之间的OAM互通能力,快速、准确地实现配置,并支持网络层和业务层的电信级运维管理,以满足基站承载的高质量、高可靠要求。第二,3G初期受空口限制,带宽需求不大,但是DOB时期,乃至演进到LTE,空口性能的提升以及大量多媒体数据业务需要更高的带宽。第三,IPRAN需要严格的时间和时钟同步来辅助实现后3G时代实时业务所要求的低时延、低抖动的传送。

  

  IPRAN是怎样跟基站对接的

   以中国联通举例说明,联通采用IPRAN传输技术,联通一般采用不同基站采用不同ip段的方式,即ip地址掩码30位。

  1、两个基站相连的传输接入设备归属同一台汇聚设备,通过该汇聚设备的路由中转功能实现;

  2、两个基站相连的传输接入设备归属不同汇聚设备,通过核心传输设备的路由中转功能实现。

  3、两基站接入异厂家传输设备必定不在同一个网段,此时主要通过本地传输设备(L3)实现。


  基站IPRAN面临的技术难题

  面对新时期基站IPRAN的承载需求,基站IPRAN面临一些关键问题的挑战。

  1、基站深化覆盖问题

  随着移动网络的不断演进,单一语音业务承载向数据业务、实时多媒体业务等综合业务承载发展。(见表1)

  表1CDMA2000演进不同阶段的带宽需求

  

  表2用户平均带宽与基站覆盖密度的关系

  

  从成本考虑,可利用目前电信无处不在的多种宽带接入手段以及宽带网络资源,如SDH/MSTP网络、宽带接入网络等,实现一定时期内的基站深度覆盖。

  但是,对于Femtocell等微基站由于多数部署室内,卫星同步接收信号较差,甚至难以接收到卫星同步信号,因此,Femtocell等室内微基站的部署,需要综合考虑宽带接入网相关设备的地面同步技术实现能力以及实施成本等因素来确定合适的承载方案。

  2、同步问题

  CDMA网同步系统的要求可以归纳为:同时要求频率同步(0.05ppm)和时间同步(3us)。CDMA网同步功能主要用于相邻基站(BTS)和基站控制器(BSC/RNC)之间进行同步,满足无缝切换。同时,CDMA网精确的同步功能可以保证空口成帧的精确性。但是,在一定时间段内失去同步的情况下,CDMA网仍然可以工作(取决于设备与终端的时钟和时间累计误差)。

  同步系统可以分为两大类,分别是卫星同步系统和地面同步系统。

  目前CDMA网广泛应用的是卫星同步系统。卫星同步系统有两种实现方式,即GPS同步系统和北斗同步系统。但是,都存在难以解决的技术问题。为了规避卫星同步系统存在的问题,满足今后IP接口基站的接入以及室内微基站(如Femtocell)等部署的需求,需要考虑地面同步系统。目前有三种地面同步方式:第一种是线路同步方式。它相对成熟,通过PDH方式实现传统传输网络的时钟同步。但这种同步方式不能提供时间同步,而且其精度取决于SDH的同步精度。后两种是新型地面同步系统,一种是基于协议层的1588v2,标准尚未完全成熟。另一种是基于物理层实现的同步以太网技术,只支持频率同步,要求每个网元必须支持同步以太网,但无须占用带宽资源。新型地面同步系统实现方便,不受自然环境影响,尤其适合Femtocell等楼内微基站和建筑物比较密集的地域;与GPS租用相比,新型地面同步系统利用二层网络传送,安全性高,且长期成本较低,但实施成本较高,宽带接入网中的相关设备还不能普遍支持。目前只有部分PON设备可以支持新型地面同步功能,多数DSLAM、BRAS等设备支持新型地面同步功能较弱。

  因此,在新型地面同步技术标准和产业链成熟前,对于同步方式的选择,建议当前区别对待,根据基站覆盖区域的重要性可分别采用卫星同步和地面同步:大部分地域继续保持卫星同步方式,等待标准和设备的进一步成熟再全面采用地面同步方式;对于特殊或重要地域,建议地面同步或卫星同步与地面同步并用方式。

  3、组网灵活性问题

  CDMA网IPRAN的灵活性要求体现在多方面。

  首先,IPRAN应满足渐进式演进的需求,即考虑到2G、3G可能的共站址以及E1、IP等多种基站接口需求,支持E1、IMA、DSL(铜缆)、XPON(光纤)及微波等多种传输媒介的接入方式。

  其次,演进到LTE时代将采用全IP组网,RNC不存在,LTE组网与宽带城域网架构接近,需要IPRAN具有较高的业务灵活性。如果基站与AGW/PGW之间采用端到端点对点二层通道,那么基站与AGW/P-GW必须处于同一IP网段,当AGW/P-GW调整时,将导致基站与AGW/P-GW之间紧耦合,即下联所有基站的IP地址都要随之更改;反之亦然。因此,组网灵活性差。为了使运维简便,提升运维效率,需要eNB与AGW/PGW之间存在动态IP路由。再次,LTE引入了AGWPool功能,当一台AGW发生故障时,下挂的所有基站需要及时切换到Pool中的备用AGW。因此,需要宽带网络提供安全、可靠、灵活的逻辑管道和保护机制实现eNB基站连接的快速切换。

  

  4、端到端OAM问题

  2G的CDMA网回传一般都是通过SDH/MSTP的数字电路或电路仿真或IMA分组通道承载。对于已经大规模商用多年的SDH网络和ATM网络,天生具有电信级OAM,可以很好地实现业务的快速开通和故障快速检测、定位。但是,随着基站回程IP化,新型分组网络(如PTN、电信级以太网等)逐步渗透到基站回程网络中。此时,一方面需要解决新型分组网本身的端到端电信级OAM支持问题;另一方面,由于基站IPRAN的渐进式演进,当利用现网MSTP资源作为IPRAN接入网段时,需要考虑与作为无线回程承载扩容的新型分组承载网之间的OAM互通互操作问题。由于目前多数电信级以太网或PTN等新型分组网端到端电信级OAM能力尚不足,因此,在MSTP与新型分组网不可避免混合组网的情形下,最好采用同厂商设备组网,以尽可能地提升端到端OAM性能。同时,在OAM标准和设备成熟之前,尽可能利用现有电信网络资源,避免引入不必要的技术风险。

  在电信运营商3G发展风起云涌之际,基站IPRAN网络演进是一个持续平滑的过程,2G/3G乃至LTE将长期共存。因此,基站IPRAN需要考虑多业务多场景的承载需求。在基站IPRAN渐进式发展过程中,尚存在多方面的技术问题有待解决,但高质量、低TCO是共性的需求。近期,建议结合技术演进和产业链成熟度以及技术经济性,根据业务发展需求,尽可能利用电信现有网络资源,实现基站RAN一定程度的IP化以及基站广泛覆盖,满足用户规模和数据业务发展的需求。


  随着移动数据业务的迅速发展,流量和带宽需求呈几何级数增长,传统基站E1上联的方式正逐步向以太网上联转变。原有的以MSTP为主的回程网络本质上仍然是TDM技术,无论是扩展能力还是带宽成本,都已经不能满足业务发展的需要。为了解决这个问题,基站承载网络IP化改造成为未来发展的必然趋势。在此新形势下,业界对移动基站回传的关注度不断增加。

  基站回传,主要集中在基站(BTS)与基站控制器(BSC)之间的传送网络,称为RAN(RadioAccessNet-work)。在新一代承载方案的选择上,出现了两种竞争性技术:PTN与IP RAN。

  

  PTN技术特性

  分组传送网在垂直网络协议中位于一层的物理层和三层的IP层之间,能够对分组业务提供高效统计复用传送,网络结构支持分层分域,具有良好的可扩展性,可以提供可靠的网络保护及OAM管理功能,具备完善的QoS功能,兼容传统TDM、ATM、FR等业务的综合传送网技术,支持分组的时间及时钟同步,分组传送网需要具备多种功能来实现上述业务的传送,这其中既有继承的原来SDH传送网的功能需求,也有针对分组业务提出的新的功能需求。目前,T-MPLS和PBT(PBB-TE)技术是分组传送网的代表技术,可以较好地满足分组传送网的功能要求。

  PTN是怎么样跟基站对接的

  目前主流IP化基站可提供FE光口、FE电口等接口,各地运营商所关注的是传输侧PTN接入设备通过哪种方式与之对接。

  应用-采用FE电口对接,如果用于以太网传输,距离不能超过100米,范围有限。但是采用FE光口对接,普通光模块传输距离2.5km,长距光模块15km,同居和异居对接都可以选择。

  安全-采用电口方式,网线容易松动导致信号容易丢失。相比之下,光口安全性能更高。

  成本-传输侧FE电口板与FE光口板成本相近,配置光口需要光模块。基站侧标配为FE电口。通过增加光模块的方式即可实现FE光口。光口与电口成本角度相比,差别在于光模块,光模块成本较低。

  

  1、环形组网接入

  对于基站所在机房环境、电源供电等安装条件良好,可以满足传输设备安装要求,同时该基站在光缆路由上为环上节点,则每个基站内均放置一端PTN接入设备,各站组成PTN GE接入环。

  设备选用原则有二。业务密集区放置稍大容量PTN接入设备,可接入更多GE支链,未来设备可升级至10GE;业务稀疏区放置小容量PTN接入设备,可控制成本,并节省机房空间。

  2、支链组网接入

  对于基站所在机房条件差,无直流供电保障,有传输安装位置的基站以支链形式接入;另外,如果该基站在光缆路由上为末端支链,组网上宜以支链形式接入。设备选用小型PTN接入设备(1U~2U)。

  部分室分基站内已有SDH设备,且仅有此一个安装位置。可以采用硬割接方式,即先将SDH设备拆除,再安装PTN设备。此方式会造成业务中断时间较长(5~10分钟),适用于非重要业务区域。此操作可与基站侧更换FE光模块的操作同步进行,双方施工人员同时进站,以最大程度减少业务中断时间。

  3、光纤拉远至附近宏站

  对于基站所在机房条件差,无直流供电保障,无传输安装位置的基站,多以室分站为主,此类型基站可将BBU所出FE光口光纤直接拉远至附近宏站内PTN设备,普通光模块传输距离2.5km,长距光模块15km。

  此种接入方式的优点是:施工难度低,不需要考虑传输设备安装。并且传输侧节省了一端PTN末端接入设备的成本。缺点是:末端站缺乏传输设备监控,拉远段落内出现故障无法快速定位。从维护角度来讲,无线专业和传输专业的界面划分需要划定,主要体现在拉远这段的光缆。

  

  基站IPRAN需求分析

  在移动互联网时代,多业务承载和综合成本控制等原因,对CDMA网基站IPRAN提出了更高的承载要求。

  由于网络演进不可能一蹴而就,会在一定时期内存在2G、3G乃至4G基站共站址的情况。因此,基站IPRAN需要考虑统一承载,在BTS基站侧能够支持E1、IMA、IP等多种接口;在BSC/RNC侧需要支持STM-1、IP接口。第一,在网络承载渐变的过程中,需要考虑到不同承载网络之间的OAM互通能力,快速、准确地实现配置,并支持网络层和业务层的电信级运维管理,以满足基站承载的高质量、高可靠要求。第二,3G初期受空口限制,带宽需求不大,但是DOB时期,乃至演进到LTE,空口性能的提升以及大量多媒体数据业务需要更高的带宽。第三,IPRAN需要严格的时间和时钟同步来辅助实现后3G时代实时业务所要求的低时延、低抖动的传送。

  

  IPRAN是怎样跟基站对接的

   以中国联通举例说明,联通采用IPRAN传输技术,联通一般采用不同基站采用不同ip段的方式,即ip地址掩码30位。

  1、两个基站相连的传输接入设备归属同一台汇聚设备,通过该汇聚设备的路由中转功能实现;

  2、两个基站相连的传输接入设备归属不同汇聚设备,通过核心传输设备的路由中转功能实现。

  3、两基站接入异厂家传输设备必定不在同一个网段,此时主要通过本地传输设备(L3)实现。

  基站IPRAN面临的技术难题

  面对新时期基站IPRAN的承载需求,基站IPRAN面临一些关键问题的挑战。

  1、基站深化覆盖问题

  随着移动网络的不断演进,单一语音业务承载向数据业务、实时多媒体业务等综合业务承载发展。(见表1)

  表1CDMA2000演进不同阶段的带宽需求

  

  表2用户平均带宽与基站覆盖密度的关系

  

  从成本考虑,可利用目前电信无处不在的多种宽带接入手段以及宽带网络资源,如SDH/MSTP网络、宽带接入网络等,实现一定时期内的基站深度覆盖。

  但是,对于Femtocell等微基站由于多数部署室内,卫星同步接收信号较差,甚至难以接收到卫星同步信号,因此,Femtocell等室内微基站的部署,需要综合考虑宽带接入网相关设备的地面同步技术实现能力以及实施成本等因素来确定合适的承载方案。

  2、同步问题

  CDMA网同步系统的要求可以归纳为:同时要求频率同步(0.05ppm)和时间同步(3us)。CDMA网同步功能主要用于相邻基站(BTS)和基站控制器(BSC/RNC)之间进行同步,满足无缝切换。同时,CDMA网精确的同步功能可以保证空口成帧的精确性。但是,在一定时间段内失去同步的情况下,CDMA网仍然可以工作(取决于设备与终端的时钟和时间累计误差)。

  同步系统可以分为两大类,分别是卫星同步系统和地面同步系统。

  目前CDMA网广泛应用的是卫星同步系统。卫星同步系统有两种实现方式,即GPS同步系统和北斗同步系统。但是,都存在难以解决的技术问题。为了规避卫星同步系统存在的问题,满足今后IP接口基站的接入以及室内微基站(如Femtocell)等部署的需求,需要考虑地面同步系统。目前有三种地面同步方式:第一种是线路同步方式。它相对成熟,通过PDH方式实现传统传输网络的时钟同步。但这种同步方式不能提供时间同步,而且其精度取决于SDH的同步精度。后两种是新型地面同步系统,一种是基于协议层的1588v2,标准尚未完全成熟。另一种是基于物理层实现的同步以太网技术,只支持频率同步,要求每个网元必须支持同步以太网,但无须占用带宽资源。新型地面同步系统实现方便,不受自然环境影响,尤其适合Femtocell等楼内微基站和建筑物比较密集的地域;与GPS租用相比,新型地面同步系统利用二层网络传送,安全性高,且长期成本较低,但实施成本较高,宽带接入网中的相关设备还不能普遍支持。目前只有部分PON设备可以支持新型地面同步功能,多数DSLAM、BRAS等设备支持新型地面同步功能较弱。

  因此,在新型地面同步技术标准和产业链成熟前,对于同步方式的选择,建议当前区别对待,根据基站覆盖区域的重要性可分别采用卫星同步和地面同步:大部分地域继续保持卫星同步方式,等待标准和设备的进一步成熟再全面采用地面同步方式;对于特殊或重要地域,建议地面同步或卫星同步与地面同步并用方式。

  3、组网灵活性问题

  CDMA网IPRAN的灵活性要求体现在多方面。

  首先,IPRAN应满足渐进式演进的需求,即考虑到2G、3G可能的共站址以及E1、IP等多种基站接口需求,支持E1、IMA、DSL(铜缆)、XPON(光纤)及微波等多种传输媒介的接入方式。

  其次,演进到LTE时代将采用全IP组网,RNC不存在,LTE组网与宽带城域网架构接近,需要IPRAN具有较高的业务灵活性。如果基站与AGW/PGW之间采用端到端点对点二层通道,那么基站与AGW/P-GW必须处于同一IP网段,当AGW/P-GW调整时,将导致基站与AGW/P-GW之间紧耦合,即下联所有基站的IP地址都要随之更改;反之亦然。因此,组网灵活性差。为了使运维简便,提升运维效率,需要eNB与AGW/PGW之间存在动态IP路由。再次,LTE引入了AGWPool功能,当一台AGW发生故障时,下挂的所有基站需要及时切换到Pool中的备用AGW。因此,需要宽带网络提供安全、可靠、灵活的逻辑管道和保护机制实现eNB基站连接的快速切换。

  

  4、端到端OAM问题

  2G的CDMA网回传一般都是通过SDH/MSTP的数字电路或电路仿真或IMA分组通道承载。对于已经大规模商用多年的SDH网络和ATM网络,天生具有电信级OAM,可以很好地实现业务的快速开通和故障快速检测、定位。但是,随着基站回程IP化,新型分组网络(如PTN、电信级以太网等)逐步渗透到基站回程网络中。此时,一方面需要解决新型分组网本身的端到端电信级OAM支持问题;另一方面,由于基站IPRAN的渐进式演进,当利用现网MSTP资源作为IPRAN接入网段时,需要考虑与作为无线回程承载扩容的新型分组承载网之间的OAM互通互操作问题。由于目前多数电信级以太网或PTN等新型分组网端到端电信级OAM能力尚不足,因此,在MSTP与新型分组网不可避免混合组网的情形下,最好采用同厂商设备组网,以尽可能地提升端到端OAM性能。同时,在OAM标准和设备成熟之前,尽可能利用现有电信网络资源,避免引入不必要的技术风险。

  在电信运营商3G发展风起云涌之际,基站IPRAN网络演进是一个持续平滑的过程,2G/3G乃至LTE将长期共存。因此,基站IPRAN需要考虑多业务多场景的承载需求。在基站IPRAN渐进式发展过程中,尚存在多方面的技术问题有待解决,但高质量、低TCO是共性的需求。近期,建议结合技术演进和产业链成熟度以及技术经济性,根据业务发展需求,尽可能利用电信现有网络资源,实现基站RAN一定程度的IP化以及基站广泛覆盖,满足用户规模和数据业务发展的需求。

未经允许不得转载: 汇鑫科服|一站式ICT服务商 » PTN与IPRAN基站对接技术详解指南

基站IPRAN相关文章

微信扫码咨询

contact